6372 measured reflections

 $R_{\rm int} = 0.021$

2145 independent reflections

1722 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1,4-Dioxo-1,4-dihydro-2-naphthyl)-2-methylpropanoic acid

Kieran J. Dempster-Rivett,^a Lyndsay Main,^a Brian K. Nicholson^a* and William A. Denny^b

^aChemistry Department, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand, and ^bAuckland Cancer Society Research Centre, School of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand Correspondence e-mail: b.nicholson@waikato.ac.nz

Received 18 September 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.092; data-to-parameter ratio = 12.7.

The sterically crowded title compound, $C_{14}H_{12}O_4$, crystallizes as centrosymmetric hydrogen-bonded dimers involving the carboxyl groups. The naphthoquinone ring system is folded by $11.5 (1)^{\circ}$ about a vector joining the 1,4-C atoms, and the quinone O atoms are displaced from the ring plane, presumably because of steric interactions with the bulky substituent.

Related literature

For synthesis details, see: Petersen & Heitzer (1972). For related studies of o-hydroxycinnamic acids and benzoquinones, see: Karle & Karle (1972); Wang et al. (1996). For related naphthoquinone structures, see: Gaultier & Hauw (1965); Gaultier et al. (1971).

Experimental

Crystal data

N a

h

$C_{14}H_{12}O_4$	V = 1181.07 (6) Å ³
$M_r = 244.24$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.3070 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 6.5027 (2) Å	T = 200 (2) K
c = 22.0392 (6) Å	$0.38 \times 0.18 \times 0.10$ mm
$\beta = 97.219 \ (1)^{\circ}$	

Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min}=0.790,\ T_{\rm max}=0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.03	refinement
2145 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ O3-H1···O4i 0.935 (19) 1.711 (19) 2.6455 (15) 176.5 (16)

Symmetry code: (i) -x, -y + 1, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Dr Jan Wikaira, University of Canterbury, for collection of X-ray intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2238).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Gaultier, J., Hauw, C., Housty, J. & Schvoerer, M. (1971). C. R. Acad. Sci. C, 273, 956-958.
- Gaultier, J. & Hauw, C. (1965). Acta Cryst. 18, 179-183.
- Karle, J. M. & Karle, I. M. (1972). J. Am. Chem. Soc. 94, 9182-9189.
- Petersen, S. & Heitzer, H. (1972). Liebigs Ann. Chem. 764, 36-43.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Wang, B., Nicolaou, M. G., Liu, S. & Borchardt, R. T. (1996). Bioorg. Chem. 24, 39-49.

supplementary materials

Acta Cryst. (2007). E63, 04251 [doi:10.1107/S1600536807048131]

2-(1,4-Dioxo-1,4-dihydro-2-naphthyl)-2-methylpropanoic acid

K. J. Dempster-Rivett, L. Main, B. K. Nicholson and W. A. Denny

Comment

The title compound was prepared as part of a study to examine constrained conformational effects on lactonization of naphthohydroquinone carboxylic acid derivatives for comparison with related work on sterically crowded *o*-hydroxycinnamic acids and benzoquinone analogues with a "trimethyl-lock" effect (Karle & Karle, 1972; Wang *et al.*, 1996).

The compound crystallizes as a dimer formed about an inversion centre by O—H···O hydrogen bonding between the carboxyl groups. The naphthoquinone ring is folded by $11.5 (1)^{\circ}$ about a vector joining the 1,4-carbon atoms and the quinone O atoms are displaced from the ring plane, presumably because of steric interactions with the adjacent geminal dimethyl groups, and with the carboxyl group. Even with the bending, there is still a close intramolecular contact between O1 and O3 (2.922 (2) Å) which suggests that intramolecular O3—H1···O1 hydrogen bonding might be possible if the intermolecular dimer form was not preferred. Naphthoquinone itself, and other 2-substituted naphthoquinones (*e.g.* the 2-iodo derivative) are planar (Gaultier and Hauw, 1965; Gaultier *et al.*, 1971). However, benzoquinones with tri-substituted carbon atoms in the 2-position also show displacement of the quinone O atoms from the plane of the ring (Wang *et al.*, 1996).

Experimental

The title compound was prepared using the method of Petersen & Heitzer (1972). Crystals suitable for X-ray analysis were grown from a solution in toluene.

Refinement

The carboxyl H atom was located in a penultimate difference Fourier map and its position was refined freely with $U_{iso} = 0.05 \text{ Å}^2$. All other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H, and with C—H = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound with displacement parameters drawn at the 30% probability level for non-H atoms.

Fig. 2. Side-on view showing the folding of the aromatic ring.

2-(1,4-Dioxo-1,4-dihydro-2-naphthyl)-2-methylpropanoic acid

Crystal data	
$C_{14}H_{12}O_4$	$F_{000} = 512$
$M_r = 244.24$	$D_{\rm x} = 1.374 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3955 reflections
a = 8.3070 (2) Å	$\theta = 2-25^{\circ}$
b = 6.5027 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 22.0392 (6) Å	T = 200 (2) K
$\beta = 97.219 \ (1)^{\circ}$	Needle, yellow
$V = 1181.07 (6) \text{ Å}^3$	$0.38\times0.18\times0.10~mm$
Z = 4	

Data collection

Siemens SMART CCD diffractometer	2145 independent reflections
Radiation source: fine-focus sealed tube	1722 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 200(2) K	$\theta_{\text{max}} = 25.4^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -9 \rightarrow 9$
$T_{\min} = 0.790, \ T_{\max} = 0.990$	$k = 0 \rightarrow 7$
6372 measured reflections	$l = 0 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0458P)^2 + 0.2618P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.092$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
2145 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
169 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.014 (2)

Secondary atom site location: difference Fourier map

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.22816 (14)	0.56642 (15)	0.14194 (5)	0.0427 (3)
O2	0.40002 (14)	-0.08507 (17)	0.27913 (5)	0.0483 (3)
O3	0.03089 (13)	0.29681 (18)	0.05640 (5)	0.0412 (3)
O4	0.19621 (13)	0.46089 (17)	0.00002 (5)	0.0435 (3)
H1	-0.046 (2)	0.386 (3)	0.0360 (8)	0.050*
C1	0.24736 (16)	0.4101 (2)	0.17254 (6)	0.0307 (3)
C2	0.29793 (16)	0.2139 (2)	0.14460 (6)	0.0289 (3)
C3	0.33983 (17)	0.0523 (2)	0.18060 (6)	0.0330 (3)
Н3	0.3707	-0.0713	0.1622	0.040*
C4	0.34047 (17)	0.0569 (2)	0.24761 (6)	0.0350 (3)
C5	0.23413 (19)	0.2327 (3)	0.33547 (7)	0.0469 (4)
Н5	0.2649	0.1169	0.3605	0.056*
C6	0.1598 (2)	0.3998 (3)	0.35918 (7)	0.0540 (5)
Н6	0.1387	0.3978	0.4006	0.065*
C7	0.11625 (19)	0.5692 (3)	0.32321 (8)	0.0507 (5)
H7	0.0662	0.6835	0.3401	0.061*
C8	0.14484 (18)	0.5740 (3)	0.26257 (7)	0.0400 (4)
H8	0.1146	0.6912	0.2380	0.048*
C9	0.21794 (16)	0.4066 (2)	0.23789 (6)	0.0328 (3)
C10	0.26363 (16)	0.2354 (2)	0.27450 (6)	0.0351 (3)
C11	0.17484 (18)	0.3414 (2)	0.04156 (6)	0.0322 (3)
C12	0.31285 (17)	0.2190 (2)	0.07637 (6)	0.0327 (3)
C13	0.47669 (18)	0.3179 (3)	0.06739 (7)	0.0423 (4)
H13A	0.4896	0.3180	0.0238	0.063*
H13B	0.5651	0.2390	0.0901	0.063*
H13C	0.4797	0.4597	0.0826	0.063*
C14	0.3015 (2)	0.0004 (3)	0.04859 (7)	0.0491 (4)
H14A	0.3959	-0.0803	0.0658	0.074*
H14B	0.2993	0.0095	0.0041	0.074*
H14C	0.2021	-0.0665	0.0582	0.074*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0608 (7)	0.0313 (6)	0.0360 (6)	0.0057 (5)	0.0062 (5)	0.0046 (4)
O2	0.0507 (7)	0.0516 (7)	0.0408 (6)	0.0089 (5)	-0.0010 (5)	0.0170 (5)
O3	0.0335 (6)	0.0501 (7)	0.0389 (6)	-0.0016 (5)	0.0012 (4)	0.0127 (5)
O4	0.0414 (6)	0.0559 (7)	0.0333 (6)	0.0028 (5)	0.0054 (4)	0.0165 (5)
C1	0.0292 (7)	0.0327 (8)	0.0294 (7)	-0.0012 (6)	0.0004 (5)	-0.0002 (6)
C2	0.0273 (7)	0.0312 (7)	0.0277 (7)	-0.0016 (5)	0.0013 (5)	-0.0001 (6)
C3	0.0347 (7)	0.0313 (7)	0.0322 (8)	0.0009 (6)	0.0009 (6)	0.0019 (6)
C4	0.0300 (7)	0.0400 (8)	0.0334 (8)	-0.0016 (6)	-0.0016 (6)	0.0085 (6)
C5	0.0378 (9)	0.0710 (12)	0.0310 (8)	0.0018 (8)	0.0008 (6)	0.0071 (8)
C6	0.0410 (9)	0.0934 (14)	0.0277 (8)	0.0036 (9)	0.0052 (7)	-0.0085 (9)

supplementary materials

C7	0.0377(0)	0.0736(12)	0.0407 (9)	0.0050 (8)	0.0044 (7)	-0.0174(9)
C7	0.0377(9)	0.0730(12)	0.0407(3)	0.0039(8)	0.0044(7)	-0.0070(7)
C8	0.0339(8)	0.0470(9)	0.0382(8)	-0.0022(7)	0.0030(0)	-0.0070(7)
C10	0.0273(7)	0.0399(8)	0.0303(7)	-0.0021(0)	-0.0013(3)	-0.0024(0)
C10	0.0277(7)	0.0483(9)	0.0280(7)	-0.0017(6)	-0.0003(0)	0.0018(0)
C11	0.0309 (8)	0.0332 (8)	0.0242(7)	-0.0020(6)	0.0023(3)	-0.0009(0)
C12	0.0381(8)	0.0559(8)	0.0261(7)	0.0033(6)	0.0034 (6)	0.0006 (6)
C13	0.0370 (8)	0.0554 (10)	0.0351 (8)	0.0052 (7)	0.0071 (6)	0.0072(7)
C14	0.0724 (12)	0.0417 (9)	0.0321 (8)	0.0088 (8)	0.0024 (7)	-0.0062(7)
Geometric paran	neters (Å, °)					
01—C1		1.2193 (17)	C6—	H6	0.95	0
O2—C4		1.2219 (17)	C7—4	C8	1.38	7 (2)
03—C11		1.3113 (17)	C7—	H7	0.95	0
O3—H1		0.935 (19)	C8—4	C9	1.39	1 (2)
04—C11		1 2303 (17)	C8—	H8	0.95	0
C1-C9		1 4910 (19)	C9—	C10	1 39	9(2)
C1-C2		1 4991 (19)	C11-	-C12	1.52	2(2)
$C^2 - C^3$		1 3364 (19)	C12-	-C13	1.52	0(2)
$C_2 = C_1^2$		1.5361 (19)	C12	-C14	1.54	6 (2)
$C_{2}^{-}C_{4}^{-}$		1.3210 (10)	C12	_H13A	0.98	0
С3—Н3		0.950	C13	_H13R	0.98	0
C_{4} C_{10}		1.484(2)	C13	_H13C	0.98	0
C5-C6		1.464 (2)	C14-	_H14A	0.98	0
C5 - C10		1.304 (3)	C14	_H14R	0.98	0
C5 H5		0.950	C14		0.98	0
C6—C7		1.378 (3)	014-	-11140	0.96	0
C11—O3—H1		109.5 (10)	C8—4	C9—C1	119.	91 (13)
O1—C1—C9		121.39 (13)	C10–	-C9-C1	120.	24 (13)
01—C1—C2		120.41 (12)	C5—4	C10—C9	119.	82 (14)
C9—C1—C2		118.18 (12)	C5—4	C10—C4	120.	75 (14)
C3—C2—C1		119.38 (12)	C9—4	C10—C4	119.	42 (12)
C3—C2—C12		123.74 (12)	04—	C11—O3	123.	14 (13)
C1—C2—C12		116.64 (11)	04—	C11—C12	122	37 (13)
C2-C3-C4		123.10 (13)	03—	C11—C12	114.	29 (12)
C2—C3—H3		118.4	C11-	-C12C2	111	05 (11)
C4—C3—H3		118.4	C11-	-C12C13	109	80 (12)
02-C4-C3		120 25 (14)	C2—(C12-C13	108	57 (11)
02 - C4 - C10		121.85 (13)	C11-	-C12C14	106	06(12)
C_{3} C_{4} C_{10}		117 88 (12)	C2—	C12 - C14	111	23 (12)
C6-C5-C10		119.63 (16)	C13-	-C12 $-C14$	110	11(13)
С6—С5—Н5		120.2	C12-	-C13-H13A	109	5
C10-C5-H5		120.2	C12	-C13-H13B	109.	5
C7 - C6 - C5		120.2	H13A	H13B	109.	5
С7—С6—Н6		119.8	C12_	-C13-H13C	109.	5
С5—С6—Н6		119.8	н13л	H13C	109.	5
C6-C7-C8		120 53 (16)	H13R	-C13-H13C	109.	5
С6—С7—Н7		119.7	C12	-C14H144	109.	5
C8_C7_H7		119.7	C12-	_C14H14R	109.	5
0 0 - 11/		11/./	C12-		109.	5

C7—C8—C9 C7—C8—H8 C9—C8—H8 C8—C9—C10	119.69 (16) 120.2 120.2 119.84 (13)		H14A—C14—H1 C12—C14—H140 H14A—C14—H1 H14B—C14—H1	4B C 4C 4C	109.5 109.5 109.5 109.5
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H1···O4 ⁱ		0.935 (19)	1.711 (19)	2.6455 (15)	176.5 (16)
Symmetry codes: (i) $-x$, $-y+1$, $-z$.					

